Programming by Demonstration with DLProlog

José Oscar Olmedo-Aguirre!, Marisol Vazquez-Tzompantzi?,
Giner Alor-Hernandez?

L Cinvestav-IPN, Department of Electrical Engineering, Mexico City,
Mexico

2 Cinvestav-IPN, DCTS, Mexico City,
Mexico

3 Instituto Tecnolgico de Orizaba, Orizaba, Veracruz,
Mexico

oolmedo@cinvestav.mx, galor@itorizaba.edu.mx, mvazquezt@cinvestav.mx

Abstract. Traditionally computer programming has been conducted as
a long lasting cycle of coding, testing and debugging. In comparison, in
programming by demonstration (PBD), a system automatically attempts
to construct a program that produces the same input-output pairs given
as examples by a demonstrator. Unfortunately, in most PBD systems
this automatic program construction process has been approached by
finding the proper composition of simpler functions searched from a basic
set. The exponential computational costs of such searches makes this
approach impractical except for a few domains (i.e. text processing) in
which some demonstrator’s clues can be used to dramatically reduce the
search space. In this work, some of the features of a PBD system under
construction are presented that does not rely on function composition
but in the step by step construction of a program automaton. The
automaton is described in DLProlog, a dynamic logic modal extension
of pure Prolog. DLProlog allows to represent the automaton states as
user defined first-order predicates and the automaton transitions as logic
rules (i.e. dynamic logic modal Horn clauses). The main contributions
of this work are twofold: (i) by using a spreadsheet like system for
conducting the demonstrations where the basic behavioral rules of the
program are learnt by the system, and (ii) by using a dymanic logic
modal inference system to construct complex behavioral program rules
from simpler ones. Besides the system not only attempts to construct
the program but also assists on providing the formal specifications of the
input-output conditions, an aspect of paramount importance for program
development.

Keywords: Programming by example, logic programming, dynamic logic,
knowledge representation and reasoning, machine learning.

pp. 31-40; rec. 2015-08-14; acc. 2015-10-19 31 Research in Computing Science 107 (2015)

José Oscar Olmedo-Aguirre, Marisol Vazquez-Tzompantzi, Giner Alor-Hernandez

1 Introduction

According to [2], in programming by demonstration (PBD), the demonstrator
should be able to instruct a system to learn that demonstrator does and the sys-
tem should create the program that reproduces the users actions. In comparison,
in programming by example (PBE) [2, 3], an end-user demonstrates to a system
a set of examples consisting of input-output pairs and from them the system
will attempt to infer the program that produces these input-output relations.
While in PBD the demonstrator provides more guidance to the system to learn
the intended program through the observed actions, in PBE the demonstrator
only provides a concrete list of input-output pairs from which the system will
accomplish the challenging task of deriving the entire program. Hence PBD is
intended for programmers with varying degrees of experience, whereas PBE is
destined for end-users with no interest in programming the task at hand.

Both programming paradigms are very close areas of research in machine
learning, though the more ambitious goals of PBE comes with a price. As argued
by Adytia el al. [4], there are two major concerns in this approach: firstly, the very
few examples given per task by the demonstrators, and secondly, the searching
over arbitrary composition of consistent candidate functions. Possibly, the second
one is more challenging because the function composition problem is a NP-
complete problem and defies all the state-of-the-art search techniques due to the
fact that any change in the input-output relation may radically change the entire
program. As an example of the unstable behavior of a PBE system, consider the
simple task of reversing lists. As training examples for the PBE system, the
demonstrator provides the list of input-output pairs shown in Figure 1:

Input Output
(] (]
[a] [a]
(6] (6]
[a,b,qd] [d,b7c,a]

[0,1,2,3,4,5,6] [6,5,4,3,2,1,0]

Fig. 1. A list of input-output pairs in the reverse program demonstration.

With no additional information, the PBE system may infer that the output is
produced from the input by applying the reverse sorting function. Nonetheless,
by including the input [a, b, e, c,d] as testing case, a wrong output is produced
as shown next:

Input Wrong Output Expected Output

[a,b,e,c,d] [e,d,c,b,a] [d,c,e,Db,al

Research in Computing Science 107 (2015) 32

Programming by Demonstration in DLProlog

where the reverse sorting function that produced the wrong output needs to be
discarded because it does not lead to the expected output. In some problem
domains like text processing, the user may provide in the examples additional
information that the PBE system uses to draw as many clues as possible. The
clues are used in heuristics that may help to reduce the vast search space
by selecting better interpretations of the examples. Fortunately, because PBE
systems are mainly used in the user-interface, for example of a spreadsheet
program, their close interaction with end-users allows the system to acknowledge
when the function composed is incorrect whenever the output produced by the
system is erased by the user. With this action the PBE system starts searching
again for another function that can reproduce the new example along with all
the others.

However, the price of this form of unsupervised machine learning of a PBE
system is high and not required when the demonstrators are not end-users but
programmers. Programmers do not need a system that guess functions that may
be wrong for the problem at hand. That programmers need is a programming en-
vironment that simplifies the demonstration and where the programmers be able
to undertake some abstract reasoning in order to generalize to a parameterized
program from the concrete examples provided.

The PBD under design rest on the following principles observed on the
programmers behavior when dealing with complex programs:

— Programmers prefer a short cycle of interaction with the input-output pairs
obtained by the program. They prefer to find errors as soon as possible in
their understanding of the problem rather than spending too much time in
a program that may not produce the expected results. Generally, the time
spent by programmers to know if their code meet their expectations (not to
say specifications) long last in a compiled program than in an interpreted
one.

— Programmers find easier to deal with concrete examples instead of going
directly through the program codification. Very often programmers need
to make some small tests and experiments in order to make sure they
understand how to build the program correctly. Unfortunately, the problem
with this approach is in the selection of the input data, because they may
not consider all the cases in the program design that are required to take
into account. However, if the selection exhaustively considers all the relevant
cases, this strategy is very helpful to gain deep insights not only on the
program design but also on solving the problem at hand.

These principles have motivated the development of a PBD environment that
uses DLProlog [8] as its foundational programming language. DLProlog provides
the programming concepts used in the environment like program state and
program state transition represented by predicates and logic rules (i.e. dynamic
logic modal clauses), respectively.

This article is organized as follows. In section 2, a succinct review of the
related work is presented. In section 3, a demonstration of how to reverse a finite

33 Research in Computing Science 107 (2015)

José Oscar Olmedo-Aguirre, Marisol Vazquez-Tzompantzi, Giner Alor-Hernandez

list of elements is given. In section 4, the clause learning process is presented
in some detail. In section 5, the program construction process is presented as
the outcome of an inference procedure. Finally in section 6, some concluding
remarks are given along with the future work that already is in progress.

2 Related Work

The history of PBD can be traced back as early as the middle of 1970s with
the pioneering work of D. Canfield Smith with his Pygmalion [2] system writ-
ten in SmallTalk. Pygmalion was intended to change the way of programming
in which programs are demonstrated concretely to the computer. One of the
main concerns introduced by Canfield is about the human-computer interaction
dimensions of a programming language and a programming environment. He
argues that writing static language statements interleaved with the computer
enactment of such statements becomes a poor way of communication when the
translation last long periods of compilation and debugging in opposite directions.
Upon this approach of programming, Pygmalion was designed as a graphical
programming environment that allows users to sketch their program ideas in-
stead of typing program instructions, in a way that the sketches can actually be
executed by a computer. After this pioneering work, a number of research pro-
posals came into the scene [2], like Thinker for programming learning, Rehearsal
World for developing educational software, Peridot for creating user interfaces,
Chimera for graphical editing, The Geometry Sketch Pad for problem solving in
Euclidian Geometry, and TELS for text editing tasks, among others. Though all
of them have a notorious influence in modern graphical user interfaces, TELS
have silently influenced the text entry systems of our modern intelligent mobile
phones.

However, the interest for PBE and PBD spans over fields as different as
diverse like Robotics where the purpose is to teach to robots how to achieve
some repetitive tasks by user demonstrations [5]. Despite of nowadays there is
no a successful and widely used PBE environments, some techniques have found
their place and are of common use in widely accepted tools like spreadsheets
and graphical user interfaces that learns from user inputs of text and predicts
the next input [4]. Because of their theoretical and practical importance, PBE
and PBD are important research areas in the Al field of Machine Learning [6].

3 Programming by Demonstration

The PBD system under construction provides a programming environment with
a spreadsheet as a front-end user interface along with a small set of basic list
processing functions like hd(), t1() and cons(). Assuming that xs denotes a non-
empty list, function hd(zs) returns the first element of xs and tl(xs) returns the
remaining list after removing the first element of xs, whereas cons(z, zs) written
[z|zs] as in Prolog constructs a list with z as its first element and xs as a list
with the remaining elements. The purpose of the environment is to provide an

Research in Computing Science 107 (2015) 34

Programming by Demonstration in DLProlog

electronic pad where the programmer can figure out the sequence of operations
the program should follow to achieve the task. Figure 2 shows a demonstration
of how to reverse a list in the PBD environment.

State xs YS1 YS2 z8
Reverseg [a, b, c,d] - - -
Reverses [a,b,c,d] [[a,b,c,d] -
Reversez [a,b,c,d] [a] [b,c,d] —
Reverses [a,b,c,d] [b,a] [c,d] -
Reverses [a,b,c,d] [c,b,a] [d] -
Reversez [a,b,c,d] [d,c,b,a] [] —
Reverse: [a, b, c,d] - - [d,c,b,a]

Fig. 2. Demonstration of how to reverse a list.

The demonstration that reverses a list is very simple though illustrative. It
proceeds by splitting the input list xs into two lists ys; and yss, where ys;
contains the elements of xs already reversed and yse contains the remaining
elements of xs not reversed yet. Thus, for example, the bindings xs = [a, b, ¢, d],
ys1 = [b, a] and yss = [c, d] describe a valid state during the course of the reverse
action on xs. For the next valid state, the first element of yss is removed and
inserted at the front of ys;. In this way, the list yss of remaining elements is
decreased one by one and the list ys; of reversed elements is increased. When
eventually, the list yss becomes empty, the list ys; becomes the reverse of xs. As
the functions app() and rev() need to be defined for the specifications and for the
proof of correctness, the several technical aspects in relation to the structural
properties of lists cannot be explained here in detail for lack of space. From
the usual pure Prolog definitions of reverse/2 and append/3, the definitions of
functions app() and rev() can be established as follows:

app(zs,ys) = zs < append(zs, ys, zs)
rev(zs) = zs < reverse(zs, z$)

From the demonstration, the system will try to identify the minimal set of
states that the reversing program requires. By representing states as predicates,
the signature of each entry of the table helps to identify each state. The signature
is the list of types of the variables that the state holds. Thus the signature
of states Reverseg(zs) and Reverses(xs,ys1,yse,zs) are respectively List and
(List,List,List,List). In Figure 3, the states identified from the demonstration
are presented along with their invariant conditions as their definitions.

The invariants are the valid conditions that always hold for the values of
the variables bound to them at the corresponding states. Intuitively the invari-
ants ensure that the program only transits among valid states. Therefore, the
invariants can be used to state the partial correctness of the program where
the initial state Reverseg(zs) stands for the precondition and the final state

35 Research in Computing Science 107 (2015)

José Oscar Olmedo-Aguirre, Marisol Vazquez-Tzompantzi, Giner Alor-Hernandez

Reverseg(xs) <« List(xs)
Reverses (zs, 25) <= rev(zs) = s
Reverses (x5, ys1,ys2) < app(rev(ysi),ys2) = zs

Fig. 3. States identified from the demonstration.

Reverse; (zs, zs) stands for the postcondition. Currently, the demonstrator must
provide definitions for the invariants if the user wants to formally proof partial
correctness. However, for the derivation of the program, the invariants are not
required.

4 DLProlog Clause Learning

The following tables describe the simple rules of computation that the system
have learnt from the demonstration. The structure of these tables is similar to
the structure of the table used in the demonstration, though restricted to only
three rows. The first row shows the name of the rule and the variables with
one column for each variable. The second row shows the name of the state at
the precondition, the values that each of the variables take at this state, and
the guard condition for the rule. The third row shows the name of the state
at the postcondition, the values that each of the variables take at this state
obtained from the precondition by application of any available functions. For the
precondition, the last column shows the guarding condition that selects the valid
values to which the rule can be applied. For the postcondition, the last column
shows the action, generally an assignment of values taken from the precondition
to the variables shown in the postcondition.

In Figure 4, rule R, takes the state Reversep(xs) with s = [a,b,c,d] as
precondition and the state Reverses(xs, ys1,ys2) with the values [] and [a.b.c.d]
bound to the variables ys; and yss, respectively, as postcondition. Because this
rule always applies at the beginning of the computation, the program transits
unconditionally from state Reversey to state Reverses. In order to infer this
rule, at state Reversey the system generalizes the values that can take the input
parameter xs to lists with arbitrary but finite number of elements. Then, because
at state Reverses the demonstrator puts the empty list into variable ys; and
copies the values of zs into variable yss, the system infers that the action consists
of the multiple assignment that perform this task as shown in the rule. Below
the table, the rule Ry is shown written in DLProlog.

In Figure 5, rule Ry takes the state Reveses(zs, ys1,ys2) with s = [a, b, ¢,d],
ys1 = [d, ¢, b, a] and yse = [] as precondition and the state Reverse; (s, zs) with
xs as before and zs = [d, ¢, b, a] as postcondition. This rule only applies in the
case that ysa = []|, when there are no more elements in the list to reverse. In
this case, the value assigned to the variable ys; is simply copied to the output
variable zs. Because Reverses is the final state of the automaton for the reverse
program, there are no rules having Reverses as precondition. In consequence
there are no more rules that can be applied and then the program stops. Having

Research in Computing Science 107 (2015) 36

Programming by Demonstration in DLProlog

xs ys1 ysz 28
Reverseo | [a,b,c,d] — — — | true (a)
Reverses | [a,b,c,d] [] [a,b,c,d] —| (ys1,ys2):=([],zs)

[(ys1,ys2):=([],zs)] Reversez(zs, ys1, ys2) < Reverseg(zs) (b)
Fig. 4. Rule R; (a) condition-action table, (b) DLProlog clause
the program stopped at this state, the postcondition of the reverse program

becomes necessarily satisfied because the postcondition is logical consequence of
the state Reverses.

xs ys1 ys2 28
Reverses | [a,b,c,d] [d,c,b,a] [] - ys2 =[] (a)
Reverse; | [a,b,c,d] [d,c,b,a] [] [d,c,b,a] | zsi=ys:

[zs:=ys1] Reverse: (s, zs) < ys2 = [], Reversea (s, ys1,ys2) (b)

Fig. 5. Rule Ry (a) condition-action table, (b) DLProlog clause.

In Figure 6, rule R takes the state Reverseqs(xs, ys1, ys2) with zs = [a, b, ¢, d],
ys1 = [a] and yss = [b, ¢, d] as precondition and the same state as postcondition
although with ys; = [b,a] and ysy = [c,d]. This rule only applies in the case
that ysa # [], when there are still some (at least one) elements to be reversed.
In the demonstration, there are a number of actions to be taught to the system
by: (i) passing the mouse over the list ysy that makes selectable both the first
and the rest of this list, (ii) selecting the first element of yso, (iii) dragging
the selected element to the front of ys; and dropping it there, (iii) passing the
mouse over the list yso, (iv) selecting the rest of the list yss, and (iii) dragging
the selected list to ys; and dropping it there. These actions can be summarized
in the single DLProlog action (ys1,ys2):=([hd(ys2)|ys1], tl(ysz2)) that appears
at the modality in the head of the clause Rs.

s ys1 yS2 28

Reversez | [a,b,c,d] [a] [b,c,d] — | ys2 #] (a)
Reverses | [a,b,c,d] [b,a] [c,d] — | (ys1,ys2):=([hd(ys2)|ysi],tl(ys2))
[(ys1,ys2):=([hd(ys2)|ys1],t1(ys2))] Reversez(zs, ys1,ys2) < (b)

ys2 # [], Reversez(xs,ys1, ys2)

Fig. 6. Rule R3 (a) condition-action table, (b) DL Prolog clause.

37 Research in Computing Science 107 (2015)

José Oscar Olmedo-Aguirre, Marisol Vazquez-Tzompantzi, Giner Alor-Hernandez

DL Prolog rules Ry, Ro and Rs, along with Ry (not presented here by its sim-
plicity) that were learnt by the system from the reverse program demonstration
are ready to be used for the synthesis of a rule with a single compound action
that has the behavior expected from the reverse program.

5 Automated Program Construction

The reverse list rules learnt from the demonstration, including also rule Ry, are
shown next:

Ro : Reverseg(zs) < List(xs)
Ry : [(ys1,ys2):=(]],zs)] Reversea(xs, ys1, ys2) < Reversep(xs)
Rg : [zs:=ys1] Reversey (s, 28) < ysa = [], Reversea (s, ys1,ys2)
Rs : [(ys1,ys2):=([hd(ys2)|ysi], t1(ys2))|Reversea(xs, ys1, ysa)

< ysa # [], Reverses (s, ys1,ys2)

w

From these rules, the following rule with a complex action can be constructed:

new ysi, ysa:

9317y323:[]7$5§
whileyss # [] do

R: yst, ysa:—[hd(yss)ysi], t1(yss) Reverse; (xs, zs) <= List(zs)
od;
z25:=Y$1

Rule R comprises a single compound action that denotes the intended list
reverse program. It can be read as follows: given a list xs, after executing the
actions enclosed in the brackets, the output list zs is the reverse of the input list
xs whenever xs be a list. The above bidimensional arrangement of the program
text (by enlarging the enclosing brackets) is preferred here in order to make it
more readable in comparison to its actual linear form:

R : [newysy,ysa: (ys1, ysa:=[],xs; - - -;zs:=ys1)] Reverse (s, zs) < List(xs)

where the ellipsis indicates the missing program fragment that can be recovered
from the previous program presentation by matching the context in which the
ellipsis occur. The program synthesis of the reverse program is the outcome of
the inference procedure applied to the rules Ry, R1, Re and R3. The DL Prolog
semantic rules for the automated program construction are presented in Figure 7
in the Gentzen’s sequent calculus [7].

Note that the DLProlog rules are written in the forward style F' = [A]F”.
The intuitive meaning of the DLProlog rules of Figure 7 can be outlined as the
construction of new program rules from others previously constructed, starting
with the learnt rules from the demonstration. Each of these rules introduces a
construct as described next.

Research in Computing Science 107 (2015) 38

Programming by Demonstration in DLProlog

P.F= -FFP P,F=FFP

FI TI
P,F = [false?][" - P’ (FI) P,F = [true?]F" - P’ (T1)
P,F=F+P PrP.G @n P, F=F{z—t}+P (A1)
P,F = [GNF' + P P,F = [z:=t]F' - P
P,F = [A|F,F' = [A'|F"+ P’ (S1) P,F = [A|F,F = [A|F' + P’ o
P,F = [A;A'|F" F P/ P, F=[AUA|F +P
! / ! ! 1 / / /
P,F=F F = |[AF,F = F'+P (1) P,F+P F (BI)

P, F = [A«]F" F P’ P,[AJFF P/ [A]F

Fig. 7. DLProlog semantic rules for program construction.

Rule (F'I) introduces the modal action false? of testing for falsity by removing
the negation from the postcondition —F. It causes to the current course of actions
to fail. Rule T'I introduces the modal action true? of testing for validity that
casuses no effect in the course of actions. Rule GI introduces the modal action
G? of testing for the guard condition G, whenever G can be deducted. Rule AT
introduces modal action z := t of the assignment of term ¢ to variable x, if there
is a binding of x to t in the substitution {« — t} applied to postcondition F”.
Rule ST introduces the modal action A; A’ of sequential composition of simpler
actions A and A’, if the postcondition of A implies the precondition of A’. If any
of the actions A or A’ fails, the sequential composition fails.

Rule UI introduces the modal action A U A’ of non-deterministic choice
of simpler actions A and A’, if they have both the same precondition F' and
the same postcondition F’. Its intuitive meaning is that it is possible to take
either course of actions given by A or A’ because both start at F and both
terminate at F’. Besides, if none of the actions fail, one of them is chosen non-
deterministically; if any of the actions fails, the other takes place; if both fail,
then the non-deterministic choice also fails. Rule 17 introduces the modal action
Ax of iteration of simpler action A, if its precondition F' implies the invariant
condition F’ of the iteration and the invariant F’ implies the postcondition F”.
If A fails, the iteration terminates.

Finally rule BI introduces the necessity modal action [A] by modal general-
ization on formula F', meaning that if F' is valid in a state it is also valid by any
course of actions A that lead to that state. If the action fails, the postcondition
becomes necessarily false.

These semantic rules for the program derivation cannot be applied directly
because they are expressed in terms of the basic dynamic logic program combi-
nators false, true,;,U, x,:=. The usual structured constucts of DLProlog like
if thenelse fi for selection and whiledo od for iteration must be previously
translated into the basic combinators by using the following translation schemas:

39 Research in Computing Science 107 (2015)

José Oscar Olmedo-Aguirre, Marisol Vazquez-Tzompantzi, Giner Alor-Hernandez

skip — true?

fail — false?

if F'then Afi — F7,A

if FFthen Aj else Axfi — F17;A1 U Fy7; A,
while F'do Aod — (F7A) *; (=F7?)

that provides the precise meaning of the usual structured program constructors.
Though the semantic rules of DLProlog can be expressed directly using the
structured constructors, they are harder to read and understand.

6 Conclusions

In this paper, the foundations of a PBD system are presented. The PBD system
works (i) by learning by demonstration the states and the transitions of the
program, represented as predicates and rules, respectively, and (ii) by deriving
the entire program by recursively assembling simpler rules. The final outcome
of the rule construction process is the program with the intended behavior. This
approach may probe to be more realistic than function guessing in applications
that may not offer any clue.

Among the future work is to finish the user interface and to develop a solid
implementation of the semantic rules of DLProlog in order to axiomatically
construct correct programs. The integration of both parts is also a hard task
to achieve. However, the aim of this research is encouraged by the teaching
experience of the first author in the development and verification of non trivial
programs. Building an interactive enviroment that provides the means to teach
essential programming concepts is the long-term vision of this work.

References

1. Halbert, Dan: Programming by Example. PhD diss. U.C. Berkeley (1984)

2. Cypher, Allen: Watch What I Do: Programming by Demonstration. MIT Press
(1993)

3. Lieberman, Henry: Your Wish is My Command: Programming By Example. Morgan
Kaufmann (2001)

4. Aditya, Krishna Menon, et al.: A Machine Learning Framework for Programming by
Example. In: Proceedings of the 30th International Conference on Machine Learning,
Atlanta Georgia, USA, JMLR: WCP volume 28 (2013)

5. Billard, A., Calinon, S., Dillmann, R., Schaal, S.: Robot Programming by Demon-
stration. In: Handbook of Robotics, MIT Press (2008)

6. Calinon, S., Guenter, F., Billard, A.: On Learning, Representing, and Generalizing
a Task in a Humanoid Robot. In: IEEE Transactions on Systems, Man, and
CyberneticsPart B: Cybernetics, Vol. 37, No. 2, pp. 226-298 (2007)

7. Buss, Samuel R.: An introduction to proof theory. In: Samuel R. Buss. Handbook
of proof theory. Elsevier, pp. 1-78 (1998)

8. Olmedo-Aguirre, José Oscar, Morales-Luna, G.: A Dynamic-Logic-based Modal
Prolog. In: Proceedings MICAI 2012, CPS IEEE Computer Society, pp. 3-9 (2012)

Research in Computing Science 107 (2015) 40

